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ABSTRACT 
A power-law correlation based on an inverse filter Fourier-Radon-transform synthetic discriminant function (SDF) for 
facial recognition is proposed. In order to avoid spectral overlap and nonlinear crosstalk, superposition of rotationally 
variant sets of inverse filter Fourier-transformed Radon-processed templates is used to generate the SDF. For the inverse 
filter, the Fourier transform of M projections (Radon Transform) from one training image is combined with (N-1) M 
Fourier transform of M projections taken from another N-1 training image. This synthetic SDF filter has a very high 
discrimination capability; however, it is not noise robust. To overcome this problem, a power-law dynamic range 
compression is added to the correlation process. The proposed filter has three advantages: (1) high discrimination 
capability as an inverse filter, (2) noise robustness due to dynamic range compression, and (3) crosstalk-free nonlinear 
processing. The filter performance was evaluated by established metrics, such as peak-to-correlation energy (PCE), 
Horner efficiency, and correlation-peak intensity. The results showed significant improvement as the power-law filter 
compression increased. 
Keywords: pattern recognition, correlation, synthetic discriminant function (SDF), and Radon transform 

 
1. INTRODUCTION 

Facial recognition using optical correlators, combined with training techniques such as synthetic discriminant functions 
(SDFs) is associated with some limitations in algorithms for correlation-based distortion-invariant recognition systems. 
One of these limitations is more evident when the matched filter1 is used. Matched filter is the optimal filter that 
provides the maximum signal-to-noise ratio for white Gaussian noise sample distribution for the recognition of 
undistorted images. The SDF, introduced by Caulfield and Malony2 and by Hester and Casasent,3 are the primary efforts 
in dealing with the problem of distortion-invariant recognition systems. There are numbers of significant advances made 
in relation to the SDF such as the minimum average correlation energy4 and the minimum variance SDF filters.5 There 
have been also the phase-only and the binary phase-only implementations6,7 that made important practical advances in 
the recognition of distorted images. One of the problems with the SDF is the use of the entire two-dimensional (2-D) 
image in designing the filter, which leads to a filter response containing a composite image at any given point in space. 
This results in many cross correlation terms not matching any of the input images.8 Therefore Riasati and Abushagur9 
proposed a new matched filter SDF design based on the projection-slice theorem (PST). In this design, the images are 
generated via a few slice projections of the object enabling a sparse collection of the information data. The collection of 
these cross-sections is sufficient for re-creating the object’s real image. The 2-D projection-slice theorem is defined as 
follows: the Fourier transform of the projection of a two-dimensional function onto a line is equal to a slice through the 
origin of the two-dimensional Fourier transform of that function which is parallel to the projection line. The 
mathematical expression for PST is a two dimensional Radon transform. The inverse Radon transform is used to 
reconstruct medical images from computed tomography scans10.  
Alsamman and Alam11, used a linear superposition of several image Fourier transform projections of images selected 
from training templates as the synthetic matched template within fringe adjusted correlator. As stated above, the 
Matched filter is the optimal filter for detecting signals embedded in zero-mean Gaussian noise and the SDF design is 
appropriate for detecting targets within a noisy clutter; however, in facial recognition, noise is not significant, unless the 
picture is taken in dark. Therefore for facial recognition purposes, it is better to use a high discriminant correlation filter. 
For instance, an inverse filter is known as a high discriminative correlation filter; however, this filter can be a poor 
choice for improving the signal-to-noise ratio.  
In order to avoid spectral overlap and nonlinear crosstalk, and also in order to have a high discriminative correlation 
filter with the capability of improving the signal-to-noise ratio, we propose the superposition of rotationally variant sets 
of Fourier-transformed Radon-processed templates to generate the synthetic discriminant function (SDF) with the use of 
a power-law correlation based inverse filter. 
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The proposed filter has the following advantages: (1) high discrimination capability as an inverse filter, (2) noise 
robustness due to power-law dynamic range compression, and (3) crosstalk-free nonlinear processing.  
The filter performance was evaluated by established metrics, such as peak-to-correlation energy (PCE)8,12, Horner 
efficiency13, and correlation peak intensity. The results show significant improvement as the power-law compression 
increases. 

 
2. RADON TRANSFROM INVERSE SDF FILTER 

The composite image created by the SDF algorithm from several training images, is generated via weighted average of 
the various frequency components of the training images. 
According to the projection-slice theorem (PST), the Fourier transform of the projection of a two-dimensional function 
onto a line is equal to a slice through the origin of the two-dimensional Fourier transform of that function which is 
parallel to the projection line10. This is defined as a two dimensional Radon transform which is the mathematical 
expression for PST. A composite image can be generated of different slices from training images so that the frequency 
components from different images do not overlap.  
The final composite slice projection matched filter SDF is defined as: 
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While the composite slice projection inverse filter can be defined as:  
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where N is the number of training images, M is the number of slices taken from each image, Tn is the n'th training image, 
an is the SDF coefficient corresponding to the n'th training image, and u and v are the frequency variables for the 
Cartesian coordinate, while ω and Ф  are the frequency variables in the polar coordinate systems:  

φω cos=u             (3) 

φω sin=v            (4) 

And Фmn is determined by:   
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The correlation results for the matched and inverse composite filters respectively are: 

[ ]),(),( νµνµ MPSFFT   (5)    and    [ ]),(),( νµνµ IPSFFT     (6) 

where S(u,v) is the input image. 
In facial recognition, the input images are not usually noisy. Therefore, it is better to use the inverse filter version of the 
SDF for better discrimination. However, for the pictures taken in dark conditions, the images can be noisy. Therefore, an 
improved version of the inverse filter is required. 
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One way to reduce noise is to introduce dynamic range compression on the Fourier spectrum of a noisy image. Dynamic 
Range Compression/Expansion known as companding (compressing-expanding) is a well-established principle for 
recovering the signal embedded in high noise. When dynamic range compression nonlinearity is applied to a noisy 
signal, it improves the signal to noise ratio in areas where the signal is low relative to noise and reduces the SNR in areas 
where the signal is higher than the noise level. 
In Fourier processing, applying dynamic range compression not only enhances the signal to noise ratio where the signal 
is lower than the noise, it also has two additional effects: (a) increases noise frequency, and (b) enhances the high 
frequencies compared to the low frequencies. Increasing noise frequency leads to spreading noise over larger areas in the 
spatial domain. These three effects lead to a significant signal to noise ratio improvement within the processed data. We 
have already demonstrated the performance of dynamic range compression in both optical correlation14-17 and 
compression deconvolution18-20. 
In this paper we use power-law dynamic range compression in the Fourier plane. Accordingly the correlation results can 
be rewritten as: 

[ ] n

IPSFFT ),(),( νµνµ          (7) 

where n is less than 1 for compression purposes.  

3. COMPUTER SIMULATION 
Figure 1 shows the templates used in constructing the SDF filter. These images have been selected from the Georgia 
Tech face database21. We focused on the faces’ regions of interest (ROI) consisting of the eyes, the nose, and the 
eyebrows which are the most important features in facial recognition. Each template (faces’ ROI) was 89 x 102 pixels 
and was inserted in the center of a 256 x 256 pixels zeros array. 
 

Figure 1. The templates used in constructing the SDF 
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For constructing the SDF filter, 18 slice-projections were selected from each image. The respective angle between the 
images’ projections was one degree. Figure 2 shows the corresponding constructed Radon-processed (slice- projected) 
images from the templates shown in Figure 1.  
 
 
 
 

 
Figure 3(A) shows the impulse response of the matched filter SDF which consists of the linear superposition of the 
Fourier transform of the Radon processed images shown in Figure 2 and Figure 3(B) shows the impulse response of 
inverse filter SDF which consists of linear superposition of the inverse of the Fourier transform of the Radon processed 
images shown in Figure 2. 
 

 
 
The discrimination capability of matched filter sliced projection SDF and inverse filter sliced projection SDF are 
demonstrated in Figure 4. This figure shows the correlation results of these two filters for in-class and out-of-class cases. 
For the in-class case, a broad correlation peak has been observed when we used the matched filter SDF, while a narrow 

Figure 3. (A) Matched filter sliced projection SDF impulse response (B) Inverse filter sliced 
projection SDF 

Figure 2. Constructed images from 18 slice projections with one degree rotation  
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correlation peak was observed when the inverse filter SDF was used. For the out-of-class case, the matched filter SDF 
showed a significant correlation peak, while the correlation peak completely disappeared when the inverse filter SDF 
was used. This shows the high discrimination capability of an inverse filter.  
 

 

 
In facial recognition with low illumination condition (dark environment), the noise can become a significant factor in 
recognizing the image. In order to simulate the noise effect of the correlation performance, a zero mean Gaussian noise 
was added to the images. In our simulation, the signal-to-noise ratio was 10. 
Figure 5 (A, B, C, and D) show the correlation results with the power-law dynamic range compression for n=1, 0.7, 0.5, 
0.1 respectively.  For n=1, the correlation peak disappears completely within the noise. However, by increasing the 
severity of the dynamic range compression, the correlation peak enhances relative to surrounding noise.  
 

Figure 4. Correlation results for (A) in-class case with matched slice projection SDF, (B) out-of-class case with matched slice 
projection SDF, (C) and (D) in-class and out-of-class cases with an  inverse slice projection SDF respectively. 

Figure 5.  A, B, C and D are correlation results using the inverse sliced projection SDF with the power-law 
dynamic range compression for n=1, 0.7, 0.5 and 0.1 respectively.
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The full effect of the dynamic range compression on the correlation peak enhancement was evaluated using three 
metrics, the correlation peak-intensity Ip, the peak-to-correlation energy (PCE) and the Horner efficiency. The results for 
these metrics are presented respectively in Figures 6A, 6B and 6C. As it is evident from Figure 6A, the best correlation 
peak intensity is achieved when there is no dynamic range compression (high values of n). The correlation peak intensity 
increases nearly by a factor of 4, as the power-law dynamic range compression approaches 1 (no dynamic range 
compression). 
The degradation in the correlation peak intensity as the dynamic range compression increases is attributed to the fact, 
that most of the correlation spectrum with inverse filter SDF for certain projections is equal to one, which makes all the 
spectrum energy to be fully contributed to the correlation energy in the form of delta functions. On the other hand, when 
dynamic range compression is applied to the Fourier spectrum, the Fourier spectrum whitens near the value of 1; 
however, it contains three components: (1) the nonlinear interference between the correlation spectrum and noise 
spectrum, (2) the correlation spectrum, and (3) noise spectrum. This means that the correlation peak is less since these 
components affect the portion of the spectral energy to which the correlation energy intensity belongs.  This explains the 
degradation in the correlation peak as the power-law dynamic range compression increases.  

 
 
 
Unlike the correlation peak intensity behavior, the PCE improves as the dynamic range compression increases. This 
could be attributed to two reasons: (1) the dynamic range compression offsets the signal-to-noise ratio degradation in 
particular at high frequency components due to the inverse filtering process, and (2) the dynamic range compression 
increases the noise frequency leading to spreading the noise over a very large area in the spatial plane. The PCE has been 
improved by nearly a factor of 9 as the power-law decreases from a value of 0.9 to 0.1.    
 

4. CONCLUSION 
In this paper, we have presented a power-law inverse filter projection-slice (Radon Processed) SDF for a noise robust, 
highly discriminative correlator for facial recognition. The performance of this system has been evaluated by several 
metrics including correlation peak intensity, peak-to-correlation energy and Horner efficiency. The computer simulation 
results showed the effectiveness of this approach in discriminating and detecting images embedded in noise.  
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Figure 6. Plots of the correlation results (A) Correlation peak intensity, (B) peak to correlation energy, 
and (C) the Horner efficiency 
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